Identification

Title

Dissipation and bathymetric sensitivities in an unstructured mesh global tidal model

Abstract

The mechanisms and geographic distribution of global tidal dissipation in barotropic tidal models are examined using a high resolution unstructured mesh finite element model. Mesh resolution varies between 2 and 25 km and is especially focused on inner shelves and steep bathymetric gradients. Tidal response sensitivities to bathymetric changes are examined to put into context response sensitivities to frictional processes. We confirm that the Ronne Ice Shelf dramatically affects Atlantic tides but also find that bathymetry in the Hudson Bay system is a critical control. We follow a sequential frictional parameter optimization process and use TPXO9 data-assimilated tidal elevations as a reference solution. From simulated velocities and depths, dissipation within the global model is estimated and allows us to pinpoint dissipation at high resolution. Boundary layer dissipation is extremely focused with 1.4% of the ocean accounting for 90% of the total. Internal tide friction is much more distributed with 16.7% of the ocean accounting for 90% of the total. Often highly regional dissipation can impact basin-scale and even ocean wide tides. Optimized boundary layer friction parameters correlate very well with the physical characteristics of the locality with high friction factors associated with energetic tidal regions, deep ocean island chains, and ice covered areas. Global complex M-2 tide errors are 1.94 cm in deep waters. Total global boundary layer and internal tide dissipation are estimated, respectively, at 1.83 and 1.49 TW. This continues the trend in the literature toward attributing more dissipation to internal tides.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7j67mns

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-05-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:17:55.190531

Metadata language

eng; USA