Identification

Title

AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system

Abstract

A method to assimilate all-sky radiances from the Advanced Microwave Scanning Radiometer 2 (AMSR2) was developed within the Weather Research and Forecasting (WRF) model's data assimilation (WRFDA) system. The four essential elements are: (1) extending the community radiative transform model's (CRTM) interface to include hydrometeor profiles; (2) using total water Qt as the moisture control variable; (3) using a warm-rain physics scheme for partitioning the Qt increment into individual increments of water vapour, cloud liquid water and rain; and (4) adopting a symmetric observation error model for all-sky radiance assimilation. Compared to a benchmark experiment with no AMSR2 data, the impact of assimilating clear-sky or all-sky AMSR2 radiances on the analysis and forecast of Hurricane Sandy (2012) was assessed through analysis/forecast cycling experiments using WRF and WRFDA's three-dimensional variational (3DVAR) data assimilation scheme. With more cloud/precipitation-affected data being assimilated around tropical cyclone (TC) core areas in the all-sky AMSR2 assimilation experiment, better analyses were obtained in terms of the TC's central sea level pressure (CSLP), warm-core structure and cloud distribution. Substantial (>20 %) error reduction in track and CSLP forecasts was achieved from both clear-sky and all-sky AMSR2 assimilation experiments, and this improvement was consistent from the analysis time to 72-h forecasts. Moreover, the all-sky assimilation experiment consistently yielded better track and CSLP forecasts than the clear-sky did for all forecast lead times, due to a better analysis in the TC core areas. Positive forecast impact from assimilating AMSR2 radiances is also seen when verified against the European Center for Medium-Range Weather Forecasts (ECMWF) analysis and the Stage IV precipitation analysis, with an overall larger positive impact from the all-sky assimilation experiment.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7dj5h82

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 C. Yang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T20:48:14.341415

Metadata language

eng; USA