Identification

Title

Sensitivity of total column ozone to stratospheric sulfur injection strategies

Abstract

We explore the impact of different stratospheric sulfur injection strategies to counter greenhouse gas induced warming on total column ozone (TCO), including high and low altitude injections at four latitudes, equatorial injections, and using a configuration with higher vertical resolution, based on a state-of-the-art Earth system model. The experiments maintain global surface temperatures at 2020 conditions, while following the unmitigated future scenario. Within the first 10 years of the injection, we find an abrupt deepening of the Antarctic ozone hole by 8%-20% and changes up to +/- 5% for other regions and seasons. The ozone hole recovery is delayed by similar to 25 to over 55 years, with the fastest recovery for low-altitude injections and slowest for equatorial injections. Mid to high-latitude TCO increases by similar to 15% in Northern Hemisphere winter and spring between 2010-2019 and 2080-2089 due to both increasing greenhouse gases and increasing sulfur injections. Implications for ecosystems need to be investigated.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7j67mdn

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-10-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:10:41.178438

Metadata language

eng; USA