Identification

Title

Comparative analysis of radio occultation processing approaches based on Fourier integral operators

Abstract

We analyze and compare two approaches to processing radio occultation data: (1) canonical transform method and (2) full spectrum inversion method. We show that these methods are closely related and can be explained from two view points: (1) both methods apply a Fourier transform like operator to the entire radio occultation signal, and the derivative of the phase of the transformed signal is used for the computation of bending angles, and (2) they can be explained from a signal processing view point as the location of multiple tones constituting the complete signal. The full spectrum inversion method is a composition of phase correction and Fourier transform, which makes the numerical algorithm computationally more efficient as compared to the canonical transform method. We investigate the relative performance of the two methods in simulations using a wave optics propagator. We use simple analytical models of the atmospheric refractivity as well as radiosonde data in order to reproduce complex multipath situations. The numerical simulations as well as the analytical estimations indicate that a resolution of 60 m (or even higher) can be achieved.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d78w3dgz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2004-11-11T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2004 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:12:59.077052

Metadata language

eng; USA