Identification

Title

Decarbonizing conference travel: Testing a multi-hub approach

Abstract

As the global research enterprise grapples with the challenge of a low-carbon future, a key challenge is the future of international conferences. An emerging initiative that combines elements of the traditional in-person conference and a virtual conference is a multi-hub approach. Here we report on a real-world trial of a multi-hub approach, the World Climate Research Programme/Stratosphere-Troposphere Processes and their Role in Climate (WCRP/SPARC) General Assembly held in Qingdao-Reading-Boulder during the last week of October 2022 with more than 400 participants. While there are other examples of conferences run in dual-hub or hybrid online and in-person formats, we are not aware of other large atmospheric science conferences held in this format. Based on travel surveys of participants, we estimate that the multi-hub approach reduced the carbon footprint from travel by between a factor of 2.3 and 4.1 times the footprint when hosting the conference in a single location. This resulted in a saving of at least 288 tonnes of carbon dioxide equivalent (tCO2eq) and perhaps as much as 683 tCO2eq, compared to having the conference in one location only. Feedback from participants, collected immediately after the conference, showed that the majority would again attend another conference in a similar format. There are many ways that the format of the SPARC General Assembly could have been improved, but this proof of concept provides an inspiration to other groups to give the multi-hub format a try.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d72v2m7q

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2024 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:05:25.574881

Metadata language

eng; USA