Identification

Title

Transient and quasi-equilibrium climate states at 1.5°C and 2°C global warming

Abstract

Recent climate change is characterized by rapid global warming, but the goal of the Paris Agreement is to achieve a stable climate where global temperatures remain well below 2 degrees C above pre-industrial levels. Inferences about conditions at or below 2 degrees C are usually made based on transient climate projections. To better understand climate change impacts on natural and human systems under the Paris Agreement, we must understand how a stable climate may differ from transient conditions at the same warming level. Here we examine differences between transient and quasi-equilibrium climates using a statistical framework applied to greenhouse gas-only model simulations. This allows us to infer climate change patterns at 1.5 degrees C and 2 degrees C global warming in both transient and quasi-equilibrium climate states. We find substantial local differences between seasonal-average temperatures dependent on the rate of global warming, with mid-latitude land regions in boreal summer considerably warmer in a transient climate than a quasi-equilibrium state at both 1.5 degrees C and 2 degrees C global warming. In a rapidly warming world, such locations may experience a temporary emergence of a local climate change signal that weakens if the global climate stabilizes and the Paris Agreement goals are met. Our research demonstrates that the rate of global warming must be considered in regional projections.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7b56p7n

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:10:18.682108

Metadata language

eng; USA