Identification

Title

Assimilation of NASA's Airborne Snow Observatory snow measurements for improved hydrological modeling: A case study enabled by the coupled LIS/WRF‐Hydro system

Abstract

The NASA LIS/WRF-Hydro system is a coupled modeling framework that combines the modeling and data assimilation (DA) capabilities of the NASA Land Information System (LIS) with the multi-scale surface hydrological modeling capabilities of the WRF-Hydro model, both of which are widely used in both operations and research. This coupled modeling framework builds on the linkage between land surface models (LSMs), which simulate surface boundary conditions in atmospheric models, and distributed hydrologic models, which simulate horizontal surface and sub-surface flow, adding new land DA capabilities. In the present study, we employ this modeling framework in the Tuolumne River basin in central California. We demonstrate the added value of the assimilation of NASA Airborne Snow Observatory (ASO) snow water equivalent (SWE) estimates in the Tuolumne basin. This analysis is performed in both LIS as an LSM column model and LIS/WRF-Hydro, with hydrologic routing. Results demonstrate that ASO DA in the basin reduced snow bias by as much as 30% from an open-loop (OL) simulation compared to three independent datasets. It also reduces downstream streamflow runoff biases by as much as 40%, and improves streamflow skill scores in both wet and dry years. Analysis of soil moisture and evapotranspiration (ET) also reveals the impacts of hydrologic routing from WRF-Hydro in the simulations, which would otherwise not be resolved in an LSM column model. By demonstrating the beneficial impact of SWE DA on the improving streamflow forecasts, the article outlines the importance of such observational inputs for reservoir operations and related water management applications.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d77m0ckp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:17:10.187930

Metadata language

eng; USA