Identification

Title

When will humanity notice its influence on Atmospheric Rivers?

Abstract

Quantifying the response of atmospheric rivers (ARs) to radiative forcing is challenging due to uncertainties caused by internal climate variability, differences in shared socioeconomic pathways (SSPs), and methods used in AR detection algorithms. In addition, the requirement of medium-to-high model resolution and ensemble sizes to explicitly simulate ARs and their statistics can be computationally expensive. In this study, we leverage the unique 50-km large ensembles generated by a Geophysical Fluid Dynamics Laboratory next-generation global climate model, Seamless system for Prediction and EArth system Research, to explore the warming response in ARs. Under both moderate and high emissions scenarios, increases in AR-day frequency emerge from the noise of internal variability by 2060. This signal is robust across different SSPs and time-independent detection criteria. We further examine an alternative approach proposed by Thompson et al. (2015), showing that unforced AR variability can be approximated by a first-order autoregressive process. The confidence intervals of the projected response can be analytically derived with a single ensemble member.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7tf021b

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-05-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:36:25.858233

Metadata language

eng; USA