Identification

Title

Impact of cloud-base turbulence on CCN activation: CCN distribution

Abstract

Following our previous investigation of the turbulence impact on cloud-base single-size CCN activation, this study considers a similar problem assuming CCN size distribution obtained from field measurements. The total CNN concentration is taken as either 200 cm(-3) to represent clean conditions, or as 2000 cm(-3) to represent polluted conditions. CCN is assumed to be sodium chloride. The CCN activation in the rising nonturbulent adiabatic parcel is contrasted with the activation within a rising adiabatic parcel filled with inertial-range homogeneous isotropic turbulence. The turbulent parcel of 64(3) m(3) and the turbulent kinetic energy dissipation rate of 10(-3) m(-2) s(-3) are used in most of the simulations. Results for a range of mean parcel ascent rates, between 0.125 and 8 m s(-1), are discussed. Overall, the adiabatic turbulent parcel simulations show results consistent with the adiabatic nonturbulent parcel, with higher activated CCN concentrations for stronger parcel ascent rates. The key difference is a blurriness of the separation between dry CCN size bins featuring activated and nonactivated (haze) CCN, especially for weak mean ascent rates. The blurriness comes from CCN getting activated and subsequently deactivated in the fluctuating supersaturation field, instead of all becoming cloud droplets above the cloud base. This leads to significantly larger spectral widths in turbulent parcel simulations compared to the nonturbulent parcel when activation is completed. Modeling results are discussed in the context of the impact of turbulent fluctuations on CCN activation documented in laboratory experiments using the Pi chamber.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7dv1psf

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:27.279019

Metadata language

eng; USA