Identification

Title

Spectroscopic evidence for helicity in explosive events

Abstract

Aims. We report spectroscopic observations in support of a novel view of transition region explosive events, observations that lend empirical evidence that at least in some cases explosive events may be nothing else but spinning narrow spicule-like structures. Methods. Our spectra of textbook explosive events with simultaneous Doppler flow of a red and a blue component are extreme cases of high spectroscopic velocities that lack apparent motion, to be expected if interpreted as a pair of collimated, linearly moving jets. The awareness of this conflict led us to the alternative interpretation of redshift and blueshift as a spinning motion of a small plasma volume. In contrast to the bidirectional jet scenario, a small volume of spinning plasma would be fully compatible with the observation of flows without detectable apparent motion. We suspect that these small volumes could be spicule-like structures and try to find evidence for this. We show observations of helical motion in macrospicules and argue that these features - if scaled down to a radius comparable to the slit size of a spectrometer - should have a spectroscopic signature similar to that observed in explosive events, which is admittedly not easily detectable by imagers. Despite of this difficulty, evidence of helicity in spicules has been reported in the literature. This led us to the new insight that the same narrow spinning structures may be the drivers in both cases, structures that imagers observe as spicules and that in spectrometers cross the slit and are seen as explosive events. Results. We arrive at a concept that supports the idea that explosive events and spicules are different manifestations of the same helicity-driven scenario. In contrast to the conventional view of explosive events as linear bidirectional jets that are triggered by a reconnection event in the transition region, this new interpretation is compatible with the observational results. Consequently, in this case a photospheric or subphotospheric trigger has to be assumed. Conclusions. We suggest that explosive events/spicules are to be compared to the unwinding of a loaded torsional spring.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7qn678z

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2011-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by EDP Sciences. Copyright 2011 European Southern Observatory.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:10:59.625124

Metadata language

eng; USA