Identification

Title

Quantifying the imprints of stratospheric contributions to interhemispheric differences in tropospheric CFC‐11, CFC‐12, and N2O abundances

Abstract

For trace gases destroyed in the stratosphere, mass flux across the tropopause can substantially influence observed surface hemispheric differences (NH-SH). Here, we quantify associations between observed stratospheric and tropospheric NH-SH growth rate anomalies of CFC-11, CFC-12, and N2O. We employ a chemistry climate model along with satellite and global surface station observations. Our model explains 60% of observed N2O NH-SH growth rate variability from 2005 to 2019, compared to 30% for CFC-11% and 40% for CFC-12, supporting evidence that unexpected anthropogenic emissions caused sustained positive NH-SH anomalies in these CFCs from 2012 to 2017. Between 2012 and 2015, the observed CFC-11 NH-SH difference grew by 1.7 ppt; our model explains 0.5 +/- 0.1 ppt of this growth, but not the duration. Our model suggests that in the absence of further emission anomalies, new NH-SH positive tracer anomalies should have occurred in 2020, and predicts small negative anomalies in 2021.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7qn6b69

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:16:30.163356

Metadata language

eng; USA