Identification

Title

Enhancing understanding and improving prediction of severe weather through spatiotemporal relational learning

Abstract

Severe weather, including tornadoes, thunderstorms, wind, and hail annually cause significant loss of life and property. We are developing spatiotemporal machine learning techniques that will enable meteorologists to improve the prediction of these events by improving their understanding of the fundamental causes of the phenomena and by building skillful empirical predictive models. In this paper, we present significant enhancements of our Spatiotemporal Relational Probability Trees that enable autonomous discovery of spatiotemporal relationships as well as learning with arbitrary shapes. We focus our evaluation on two real-world case studies using our technique: predicting tornadoes in Oklahoma and predicting aircraft turbulence in the United States. We also discuss how to evaluate success for a machine learning algorithm in the severe weather domain, which will enable new methods such as ours to transfer from research to operations, provide a set of lessons learned for embedded machine learning applications, and discuss how to field our technique.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d78053jx

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 The Authors

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T00:09:15.742227

Metadata language

eng; USA