Impact of stochastic ocean density corrections on air-sea flux variability
Air-sea flux variability has contributions from both ocean and atmosphere at different spatio-temporal scales. Atmospheric synoptic scales and the air-sea turbulent heat flux that they drive are well represented in climate models, but ocean mesoscales and their associated variability are often not well resolved due to non-eddy-resolving spatial resolutions of current climate models. We deploy a physics-based stochastic subgrid-scale parameterization for ocean density, that reinforces the lateral density variations due to oceanic eddies, and examine its effect on air-sea heat flux variability in a comprehensive coupled climate model. The stochastic parameterization substantially modifies sea surface temperature (SST) and latent heat flux (LHF) variability and their co-variability, primarily at scales near the resolution of the ocean model grid. Enhancement in the SST-LHF anomaly covariance, and correlations, indicate that the ocean-intrinsic component of the air-sea heat flux variability is more consistent with high-resolution satellite observations, especially in Gulf Stream region.
document
http://n2t.net/ark:/85065/d7sq94dz
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2023-07-16T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:23:32.891359