Identification

Title

Exploring the factors controlling the long-term trend (1988–2019) of surface organic aerosols in the continental United States by simulations

Abstract

Observed surface organic aerosols (OA) concentrations slightly increased in the western US (WUS) but significantly decreased in the eastern US (EUS) in summer, and continuously decreased in winter over the US region. To understand the driving factors for the long-term surface OA trend, we apply a revised version of the Community Atmosphere Model version 6 with comprehensive tropospheric and stratospheric chemistry representation, considering the heterogeneous formation of isoprene-epoxydiol-derived secondary organic aerosols (SOAIE) and fast photolysis rate of monoterpene-derived secondary organic aerosols (MTSOA) to diagnose the OA evolution in 1988-2019. Compared to older versions, the revised model better reproduces the climatology, seasonal cycle, and long-term trend of surface OA as evaluated against the Interagency Monitoring of Protected Visual Environments measurements. We find the decrease in EUS summertime OA is likely attributed to the interplay between SOAIE and MTSOA. With anthropogenic emissions reduction, primary organic aerosols (POA) declined, SOAIE decreased along with sulfate, while MTSOA increased along with biogenic emissions driven by a warming climate. POA from wildfires with a significant trend of 2.9% yr(-1) and considerable interannual variation of 62.8% drive the statistically insignificant but increasing WUS summertime OA, while anthropogenic POA dominates the decreasing wintertime OA in the US. Through sensitivity experiments, we find MTSOA show linear responses to the increasing monoterpenes emissions and negligible responses to NOx emissions reduction due to the mutual offsets between MTSOA components from different oxidation pathways. This study reveals the increasingly important role of MTSOA in summertime OA under a warming climate.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7fj2ms6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-05-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Geophysical Union (AGU).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:28:10.931521

Metadata language

eng; USA