Identification

Title

An updated Solar Cycle 25 prediction with AFT: The modern minimum

Abstract

Over the last decade there has been mounting evidence that the strength of the Sun's polar magnetic fields during a solar cycle minimum is the best predictor of the amplitude of the next solar cycle. Surface flux transport models can be used to extend these predictions by evolving the Sun's surface magnetic field to obtain an earlier prediction for the strength of the polar fields, and thus the amplitude of the next cycle. In 2016, our Advective Flux Transport (AFT) model was used to do this, producing an early prediction for Solar Cycle 25. At that time, AFT predicted that Cycle 25 will be similar in strength to the Cycle 24, with an uncertainty of about 15%. AFT also predicted that the polar fields in the southern hemisphere would weaken in late 2016 and into 2017 before recovering. That AFT prediction was based on the magnetic field configuration at the end of January 2016. We now have two more years of observations. We examine the accuracy of the 2016 AFT prediction and find that the new observations track well with AFT's predictions for the last 2 years. We show that the southern relapse did in fact occur, though the timing was off by several months. We propose a possible cause for the southern relapse and discuss the reason for the offset in timing. Finally, we provide an updated AFT prediction for Solar Cycle 25 that includes solar observations through January of 2018.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7057jtw

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-08-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:21:51.033444

Metadata language

eng; USA