An updated Solar Cycle 25 prediction with AFT: The modern minimum
Over the last decade there has been mounting evidence that the strength of the Sun's polar magnetic fields during a solar cycle minimum is the best predictor of the amplitude of the next solar cycle. Surface flux transport models can be used to extend these predictions by evolving the Sun's surface magnetic field to obtain an earlier prediction for the strength of the polar fields, and thus the amplitude of the next cycle. In 2016, our Advective Flux Transport (AFT) model was used to do this, producing an early prediction for Solar Cycle 25. At that time, AFT predicted that Cycle 25 will be similar in strength to the Cycle 24, with an uncertainty of about 15%. AFT also predicted that the polar fields in the southern hemisphere would weaken in late 2016 and into 2017 before recovering. That AFT prediction was based on the magnetic field configuration at the end of January 2016. We now have two more years of observations. We examine the accuracy of the 2016 AFT prediction and find that the new observations track well with AFT's predictions for the last 2 years. We show that the southern relapse did in fact occur, though the timing was off by several months. We propose a possible cause for the southern relapse and discuss the reason for the offset in timing. Finally, we provide an updated AFT prediction for Solar Cycle 25 that includes solar observations through January of 2018.
document
http://n2t.net/ark:/85065/d7057jtw
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2018-08-28T00:00:00Z
Copyright 2018 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:21:51.033444