Identification

Title

Insights on sea ice data assimilation from perfect model observing system simulation experiments

Abstract

Simulating Arctic sea ice conditions up to the present and predicting them several months in advance has high stakeholder value, yet remains challenging. Advanced data assimilation (DA) methods combine real observations with model forecasts to produce sea ice reanalyses and accurate initial conditions for sea ice prediction. This study introduces a sea ice DA framework for a sea ice model with a parameterization of the ice thickness distribution by resolving multiple thickness categories. Specifically, the Los Alamos Sea Ice Model, version 5 (CICE5), is integrated with the Data Assimilation Research Testbed (DART). A series of perfect model observing system simulation experiments (OSSEs) are designed to explore DA algorithms within the ensemble Kalman filter (EnKF) and the relative importance of different observation types. This study demonstrates that assimilating sea ice concentration (SIC) observations can effectively remove SIC errors, with the error of total Arctic sea ice area reduced by about 60% annually. When the impact of SIC observations is strongly localized in space, the error of total volume is also modestly improved. The largest simulation improvements are produced when sea ice thickness (SIT) and SIC are jointly assimilated, with the error of total volume decreased by more than 70% annually. Assimilating multiyear sea ice concentration (MYI) can reduce error in total volume by more than 50%. Assimilating MYI produces modest improvements in snow depth (errors are reduced by around 16%), while assimilating SIC and SIT has no obvious influence on snow depth. This study also suggests that different observation types may need different localization distances to optimize DA performance.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d70g3nx2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:22:14.282093

Metadata language

eng; USA