Identification

Title

The generation and forecast of extreme winds during the origin and progression of the 2017 Tubbs Fire

Abstract

On 8-9 October 2017, fourteen wildfires developed rapidly during a strong Diablo wind event in northern California including the Tubbs Fire, which travelled over 19 km in 3.25 h. Here, we applied the CAWFE® coupled numerical weather prediction-fire modeling system to investigate the airflow regime and extreme wind peaks underlying the extreme fire behavior using simulations that refine from a 10 km to a 185 m horizontal grid spacing. We found that as Diablo winds travelled south down the Sacramento Valley and fanned out southwestward over the Wine Country, their strength waxed and waned and their direction wavered, creating varying locations near fire origins where wind overrunning topography reached 30-40 m/s, along with streaks and bursts of strong winds in the lee of some topographic features and stagnation downstream of others. Despite a statically stable layer in the lowest 1.5 km, the high Froude number flow sometimes resembled a hydraulic jump. Elsewhere, the flow behaved similarly to neutrally-stratified flow over small hills, creating wind extrema that exceeded 40 m/s at the crest of some lesser hills including near the Tubbs fire ignition, but which shed bursts of high speed winds that travel downstream at approximately 5-7-min intervals. Nonetheless, simulated fire growth lagged satellite detection of fire arrival in Santa Rosa by up to 1 h, although whether the data detect fire line or spotting is ambiguous. A forecast simulation with a 370 m horizontal grid spacing produced an on-time fire line arrival in Santa Rosa, with calculations executed 4 times faster than real time on a single computer processor.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d76t0qm1

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:19:44.527335

Metadata language

eng; USA