Identification

Title

Tropical thin cirrus and relative humidity observed by the Atmospheric Infrared Sounder

Abstract

Global observations of cloud and humidity distributions in the upper troposphere within all geophysical conditions are critically important in order to monitor the present climate and to provide necessary data for validation of climate models to project future climate change. Towards this end, tropical oceanic distributions of thin cirrus optical depth (T) effective diameter (De), and relative humidity with respect to ice (RHi) within cirrus (RHic) are simultaneously derived from the Atmospheric Infrared Sounder (AIRS). Corresponding increases in De and cloud temperature are shown for cirrus with T>0.25 that demonstrate quantitative consistency to other surface-based, in situ and satellite retrievals. However, inferred cirrus properties are shown to be less certain for increasingly tenuous cirrus. In-cloud supersaturation is observed for 8–12% of thin cirrus and is several factors higher than all-sky conditions; even higher frequencies are shown for the coldest and thinnest cirrus. Spatial and temporal variations in RHic correspond to cloud frequency while regional variability in RHic is observed to be most prominent over the N. Indian Ocean basin. The largest cloud/clear sky RHi anomalies tend to occur in dry regions associated with vertical descent in the sub-tropics, while the smallest occur in moist ascending regions in the tropics. The characteristics of RHic frequency distributions depend on t and a peak frequency is located between 60–80% that illustrates RHic is on average biased dry. The geometrical thickness of cirrus is typically less than the vertical resolution of AIRS temperature and specific humidity profiles and thus leads to the observed dry bias, shown with coincident cloud vertical structure obtained from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The joint distributions of thin cirrus microphysics and humidity derived from AIRS provide unique and important regional and global-scale insights on upper tropospheric processes not available from surface, in situ, and other contemporary satellite observing platforms.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7qf8t1j

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-03-13T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:42:29.931878

Metadata language

eng; USA