Identification

Title

Importance of Regional‐Scale Auroral Precipitation and Electrical Field Variability to the Storm‐Time Thermospheric Temperature Enhancement and Inversion Layer (TTEIL) in the Antarctic E Region

Abstract

A dramatic thermospheric temperature enhancement and inversion layer (TTEIL) was observed by the Fe Boltzmann lidar at McMurdo, Antarctica during a geomagnetic storm (Chu et al. 2011, ). The Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) driven by empirical auroral precipitation and background electric fields cannot adequately reproduce the TTEIL. We incorporate the Defense Meteorological Satellite Program (DMSP)/Special Sensor Ultraviolet Spectrographic Imager (SSUSI) auroral precipitation maps, which capture the regional-scale features into TIEGCM and add subgrid electric field variability in the regions with strong auroral activity. These modifications enable the simulation of neutral temperatures closer to lidar observations and neutral densities closer to GRACE satellite observations (similar to 475 km). The regional scale auroral precipitation and electric field variabilities are both needed to generate strong Joule heating that peaks around 120 km. The resulting temperature increase leads to the change of pressure gradients, thus inducing a horizontal divergence of air flow and large upward winds that increase with altitude. Associated with the upwelling wind is the adiabatic cooling gradually increasing with altitude and peaking at similar to 200 km. The intense Joule heating around 120 km and strong cooling above result in differential heating that produces a sharp TTEIL. However, vertical heat advection broadens the TTEIL and raises the temperature peak from similar to 120 to similar to 150 km, causing simulations deviating from observations. Strong local Joule heating also excites traveling atmospheric disturbances that carry the TTEIL signatures to other regions. Our study suggests the importance of including fine-structure auroral precipitation and subgrid electric field variability in the modeling of storm-time ionosphere-thermosphere responses.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7ks6vv5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:14:02.237885

Metadata language

eng; USA