Identification

Title

How many active regions are necessary to predict the solar dipole moment?

Abstract

We test recent claims that the polar field at the end of Cycle 23 was weakened by a small number of large, abnormally oriented regions, and investigate what this means for solar cycle prediction. We isolate the contribution of individual regions from magnetograms for Cycles 21, 22, and 23 using a 2D surface flux transport model, and find that although the top similar to 10% of contributors tend to define sudden large variations in the axial dipole moment, the cumulative contribution of many weaker regions cannot be ignored. To recreate the axial dipole moment to a reasonable degree, many more regions are required in Cycle 23 than in Cycles 21 and 22 when ordered by contribution. We suggest that the negative contribution of the most significant regions of Cycle 23 could indeed be a cause of the weak polar field at the following cycle minimum and the low-amplitude Cycle 24. We also examine the relationship between a region's axial dipole moment contribution and its emergence latitude, flux, and initial axial dipole moment. We find that once the initial dipole moment of a given region has been measured, we can predict the long-term dipole moment contribution using emergence latitude alone.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7j67ktm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-08-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 The American Astronomical Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:36:05.982232

Metadata language

eng; USA