Identification

Title

On the diurnal cycle of surface energy fluxes in the North American monsoon region using the WRF-Hydro modeling system

Abstract

The diurnal cycles of surface energy fluxes are important drivers of atmospheric boundary layer development and convective precipitation, particularly in regions with heterogeneous land surface conditions such as those under the influence of the North American monsoon (NAM). Characterization of diurnal surface fluxes and their controls has not been well constrained due to the paucity of observations in the NAM region. In this study, we evaluate the performance of the uncoupled WRF-Hydro modeling system in its ability to represent soil moisture, turbulent heat fluxes, and surface temperature observations and compare these to operational analyses from other commonly used land surface models (LSMs). After a rigorous model evaluation, we quantify how the diurnal cycles of surface energy fluxes vary during the warm season for the major ecosystems in a regional basin. We find that the diurnal cycle of latent heat flux is more sensitive to ecosystem type than sensible heat flux due to the response of plant transpiration to variations in soil water content. Furthermore, the peak timing of precipitation affects the shape and magnitude of the diurnal cycle of plant transpiration in water-stressed ecosystems, inducing mesoscale heterogeneity in land surface conditions between the major ecosystems within the basin. Comparisons to other LSMs indicate that ecosystem differences in the diurnal cycle of turbulent fluxes are underestimated in these products. While this study shows how land surface heterogeneity affects the simulated diurnal cycle of turbulent fluxes, additional coupled modeling efforts are needed to identify the potential impacts of these spatial differences on convective precipitation.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7vx0k5g

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-09-04T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:46:22.718560

Metadata language

eng; USA