Identification

Title

Comparison and combination of regional and global ensemble prediction systems for probabilistic predictions of hub-height wind speed

Abstract

The objective of this paper is to compare probabilistic 100-m wind speed forecasts, which are relevant for wind energy applications, from different regional and global ensemble prediction systems (EPSs) at six measurement towers in central Europe and to evaluate the benefits of combining single-model ensembles into multimodel ensembles. The global 51-member EPS from the European Centre for Medium-Range Weather Forecasts (ECMWF EPS) is compared against the Consortium for Small-Scale Modelling’s (COSMO) limited-area 16-member EPS (COSMO-LEPS) and a regional, high-resolution 20-member EPS centered over Germany (COSMO-DE EPS). The ensemble forecasts are calibrated with univariate (wind speed) ensemble model output statistics (EMOS) and bivariate (wind vector) recursive and adaptive calibration (AUV). The multimodel ensembles are constructed by pooling together raw or best-calibrated ensemble forecasts. An additional postprocessing of these multimodel ensembles with both EMOS and AUV is also tested. The best-performing calibration methodology for ECMWF EPS is AUV, while EMOS performs better than AUV for the calibration of COSMO-DE EPS. COSMO-LEPS has similar skill when calibrated with both EMOS and AUV. The AUV ECMWF EPS outperforms the EMOS COSMO-LEPS and COSMO-DE EPS for deterministic and probabilistic wind speed forecast skill. For most thresholds, ECMWF EPS has a comparable reliability and sharpness but higher discrimination ability. Multimodel ensembles, which are constructed by pooling together the best-calibrated EPSs, improve the skill relative to the AUV ECMWF EPS. An analysis of the error correlation among the EPSs indicates that multimodel ensemble skill can be considerably higher when the error correlation is low.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7th8p1h

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2015-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:06:28.916979

Metadata language

eng; USA