Peak refreezing in the Greenland firn layer under future warming scenarios
Firn (compressed snow) covers approximately 90% of the Greenland ice sheet (GrIS) and currently retains about half of rain and meltwater through refreezing, reducing runoff and subsequent mass loss. The loss of firn could mark a tipping point for sustained GrIS mass loss, since decades to centuries of cold summers would be required to rebuild the firn buffer. Here we estimate the warming required for GrIS firn to reach peak refreezing, using 51 climate simulations statistically downscaled to 1 km resolution, that project the long-term firn layer evolution under multiple emission scenarios (1850-2300). We predict that refreezing stabilises under low warming scenarios, whereas under extreme warming, refreezing could peak and permanently decline starting in southwest Greenland by 2100, and further expanding GrIS-wide in the early 22nd century. After passing this peak, the GrIS contribution to global sea level rise would increase over twenty-fold compared to the last three decades.
document
http://n2t.net/ark:/85065/d7ng4vjw
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2022-11-11T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:41:55.560803