Revisiting hydrometeorology using cloud and climate observations
This paper uses 620 station years of hourly Canadian Prairie climate data to analyze the coupling of monthly near-surface climate with opaque cloud, a surrogate for radiation, and precipitation anomalies. While the cloud-climate coupling is strong, precipitation anomalies impact monthly climate for as long as 5 months. The April climate has memory of precipitation anomalies back to freeze-up in November, mostly stored in the snowpack. The summer climate has memory of precipitation anomalies back to the beginning of snowmelt in March. In the warm season, mean temperature is strongly correlated to opaque cloud anomalies, but only weakly to precipitation anomalies. Mixing ratio anomalies are correlated to precipitation, but only weakly to cloud. The diurnal cycle of mixing ratio shifts upward with increasing precipitation anomalies. Positive precipitation anomalies are coupled to a lower afternoon lifting condensation level and a higher afternoon equivalent potential temperature; both favor increased convection and precipitation. Regression coefficients on precipitation increase from wet to dry conditions. This is consistent with increased uptake of soil water when monthly precipitation is low, until drought conditions are reached, and also consistent with gravity satellite observations. Regression analysis shows monthly opaque cloud cover is tightly correlated to three climate variables that are routinely observed: diurnal temperature range, mean temperature, and mean relative humidity. The set of correlation coefficients, derived from cloud and climate observations, could be used to evaluate the representation of the land-cloud-atmosphere system in both forecast and climate models.
document
https://n2t.org/ark:/85065/d7nc63nv
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2017-04-01T00:00:00Z
Copyright 2017 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-11T19:50:01.161423