Identification

Title

Evaluating and improving the impact of the atmospheric stability and orography on surface winds in the WRF model

Abstract

This study assesses the impact of the atmospheric stability on the turbulent orographic form drag (TOFD) generated by unresolved small-scale orography (SSO) focusing on surface winds. With this aim, several experiments are conducted with the Weather Research and Forecasting (WRF) Model and they are evaluated over a large number of stations (318 at 2-m height) in the Iberian Peninsula with a year of data. In WRF, Jiménez and Dudhia resolved the SSO by including a factor in the momentum equation, which is a function of the orographic variability inside a grid cell. It is found that this scheme can improve the simulated surface winds, especially at night, but it can underestimate the winds during daytime. This suggests that TOFD can be dependent on the PBL's stability. To inspect and overcome this limitation, the stability conditions are included in the SSO parameterization to maintain the intensity of the drag during stable conditions while attenuating it during unstable conditions. The numerical experiments demonstrate that the inclusion of stability effects on the SSO drag parameterization improves the simulated surface winds at diurnal, monthly, and annual scales by reducing the systematic daytime underestimation of the original scheme. The correction is especially beneficial when both the convective velocity and the boundary layer height are used to characterize the unstable conditions.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7sn0bm1

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:02:41.066860

Metadata language

eng; USA