Identification

Title

Climate engineering through artificial enhancement of natural forcings: Magnitudes and implied consequences

Abstract

Explosive volcanism and solar activity changes have modulated the Earth's temperature over short and century time scales. Associated with these external forcings were systematic changes in circulation. Here, we explore the effect of similar but artificially induced forcings that mimic natural radiative perturbations in order to stabilize surface climate. Injection of sulfate aerosols into the stratosphere, not unlike the effects from large volcanic eruptions, and a direct reduction of insolation, similar to total solar irradiance changes, are tested in their effectiveness to offset global mean temperature rise resulting from a business-as-usual scenario, thereby reducing surface temperatures to conditions associated with committed warming of a year 2000 stabilization scenario. This study uses a coupled Atmosphere-Ocean General Circulation Model to illustrate the character of resulting climate and circulation anomalies when both enhanced greenhouse (A2 scenario) and opposing geoengineering perturbations are considered. First we quantify the magnitude of the required perturbation and compare these artificial perturbations to the natural range of the respective forcing. Then, we test the effectiveness of the "correction" by looking at the regional climate response to the combined forcing. It is shown that widespread warming could be reduced, but overcompensation in the tropics is necessary because sea ice loss in high latitudes cannot be reversed effectively to overcome higher ocean heat content and enhanced zonal winter circulation as well as the continuous IR forcing. The magnitude of new, greenhouse gas-countering anthropogenic forcing would have to be much larger than what natural forcing from volcanoes and solar irradiance variability commonly provide.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7dv1kbc

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-11-19T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by the American Geophysical Union. Copyright 2010 AGU.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T14:51:26.238683

Metadata language

eng; USA