On the relevance of aerosols to snow cover variability over high mountain Asia
While meteorology and aerosols are identified as key drivers of snow cover (SC) variability in High Mountain Asia, complex non-linear interactions between them are not adequately quantified. Here, we attempt to unravel these interactions through a simple relative importance (RI) analysis of meteorological and aerosol variables from ERA5/CAMS-EAC4 reanalysis against satellite-derived SC from Moderate Resolution Imaging Spectroradiometer across 2003-2018. Our results show a statistically significant 7% rise in the RI of aerosol-meteorology interactions (AMI) in modulating SC during late snowmelt season (June and July), notably over low snow-covered (LSC) regions. Sensitivity tests further reveal that the importance of meteorological interactions with individual aerosol species are more prominent than total aerosols over LSC regions. We find that the RI of AMI for LSC regions is clearly dominated by carbonaceous aerosols, on top of the expected importance of dynamic meteorology. These findings clearly highlight the need to consider AMI in hydrometeorological monitoring, modeling, and reanalyses.
document
https://n2t.org/ark:/85065/d7bv7mfs
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2022-09-28T00:00:00Z
Copyright 2022 American Geophysical Union (AGU).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-11T15:59:17.510246