Identification

Title

The Community Radiative Transfer Model (CRTM): Community-focused collaborative model development accelerating research to operations

Abstract

The Joint Center for Satellite Data Assimilation (JCSDA) Community Radiative Transfer Model (CRTM) is a fast, 1D radiative transfer model used in numerical weather prediction, calibration/validation, etc., across multiple federal agencies and universities. The key benefit of the CRTM is that it is a satellite simulator. It provides a highly accurate representation of satellite radiances by using the specific sensor response functions convolved with a Line-by-Line Radiative Transfer Model (LBLRTM). CRTM covers the spectral ranges consistent with all present operational and most research satellites, from visible to microwave. The capability to simulate ultraviolet radiances and support space-based radar sensors is being added over the next 2 years in CRTM version 3.0. In addition to simulated radiances, the CRTM also provides Jacobian outputs needed to interpret satellite observations for numerical weather prediction. The Jacobian estimates how changes in geophysical parameters affect simulated measurements from satellite sensors. Using the Jacobian in modeling and weather prediction improves the accuracy and efficiency of data analysis, leading to better weather predictions. The CRTM model's success and growth depend on community contributions and evaluation. To facilitate this, we have made the CRTM highly accessible through modular programming, clear documentation and tutorials, public domain licensing, unfettered public access via GitHub, and a clear path to operational implementation for innovative research. We encourage and welcome contributions from the community to help us continue to improve the CRTM.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d73x8bqz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T15:14:16.907918

Metadata language

eng; USA