Thicker clouds and accelerated Arctic sea ice decline: The atmosphere‐sea ice interactions in spring
Observations show that increased Arctic cloud cover in the spring is linked with sea ice decline. As the atmosphere and sea ice can influence each other, which one plays the leading role in spring remains unclear. Here we demonstrate, through observational data diagnosis and numerical modeling, that there is active coupling between the atmosphere and sea ice in early spring. Sea ice melting and thus the presence of more open water leads to stronger evaporation and promotes cloud formation that increases downward longwave flux, leading to even more ice melt. Spring clouds are a driving force in the disappearance of sea ice and displacing the mechanism of atmosphere‐sea ice coupling from April to June. These results suggest the need to accurately model interactions of Arctic clouds and radiation in Earth System Models in order to improve projections of the future of the Arctic.
document
http://n2t.net/ark:/85065/d72j6fj3
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2019-05-28T00:00:00Z
Copyright 2019 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:13:37.745352