Identification

Title

Analysis and validation of GPS/MET radio occultation data in the ionosphere

Abstract

Global Positioning System (GPS) radio occultation signals received by a low Earth orbit (LEO) satellite provide information about the global distribution of electron density in the ionosphere. We examine two radio occultation inversion algorithms. The first algorithm utilizes the Abel integral transform, which assumes spherical symmetry of the electron density field. We test this algorithm with two approaches: through the computation of bending angles and through the computation of total electron content (TEC) assuming straight line propagation. We demonstrate that for GPS frequencies and for observations in LEO, the assumption of straight-line propagation (neglecting bending) introduces small errors when monitoring the F 2 layer. The second algorithm, which also assumes straight-line propagation, is a three-dimensional (3-D) inversion constrained with the horizontal structure of a priori electron density fields. As a priori fields we use tomographic solutions and the parameterized real-time ionospheric specification model (PRISM) when adjusted with ionosonde data or ground-based GPS vertical TEC maps. For both algorithms we calibrate the occultation data by utilizing observations from the part of the LEO that is closer to the GPS satellite. For inversions we use dual-frequency observational data (the difference of Ll and L2 phase observables) which cancel orbit errors (without applying precise orbit determination) and clock errors (without requiring synchronous ground data) and thus may allow inversions to be computed close to real time in the future. The Abel and 3-D constrained algorithms are validated by statistically comparing 4 days of inversions with critical frequency (f 0 F 2) data from a network of 45 ionosonde stations and with vertical TEC data from the global network of GPS ground receivers. Globally, the Abel inversion approach agrees with the f 0 F 2 correlative data at the 13% rms level, with a negligible mean difference. All tested 3-D constrained inversion approaches possess a statistically significant mean difference when compared with the ionosonde data. The vertical TEC correlative comparisons for both the Abel and 3-D constrained inversions are significantly biased (âˆź30%) by the electrons above the 735-km LEO altitude.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d74j0gd2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

1999-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by AGU. Copyright 1999 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:04:46.865704

Metadata language

eng; USA