Identification

Title

Global propagation of magnetospheric Pc5 ULF waves driven by foreshock transients

Abstract

Pc5 (2-7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (by the THEMIS probes, Geotail satellite, GOES satellites, and Van Allen probes) and ground-based (by the all-sky imager at South Pole and ground-based magnetometers) observations to simultaneously analyze the waves from the foreshock region to the dayside and nightside magnetosphere. Both of our two events show that the Pc5 ULF waves are generated by foreshock transients in the dayside magnetosphere. The in situ observations by THEMIS A and D and the 2-D auroral signatures show that the compressional mode waves are likely broadband and coupled to the FLRs with different frequencies and different azimuthal phase speeds. This is the first report that foreshock transients can drive both low- and high-m FLRs, with the azimuthal wave numbers varying from similar to 5 to similar to 23. Moreover, the Pc5 ULF waves propagated antisunward to midnight, this can potentially modulate magnetospheric and ionospheric dynamics globally.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7z322z0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:24:48.627957

Metadata language

eng; USA