Identification

Title

On the day-to-day variation of the equatorial electrojet during quiet periods

Abstract

It has been known for a long time that the equatorial electrojet varies from day to day even when solar and geomagnetic activities are very low. The quiet time day-to-day variation is considered to be due to irregular variability of the neutral wind, but little is known about how variable winds drive the electrojet variability. We employ a numerical model introduced by Liu et al. (2013), which takes into account weather changes in the lower atmosphere and thus can reproduce ionospheric variability due to forcing from below. The simulation is run for May and June 2009. Constant solar and magnetospheric energy inputs are used so that day-to-day changes will arise only from lower atmospheric forcing. The simulated electrojet current shows day-to-day variability of ±25%, which produces day-to-day variations in ground level geomagnetic perturbations near the magnetic equator. The current system associated with the day-to-day variation of the equatorial electrojet is traced based on a covariance analysis. The current pattern reveals return flow at both sides of the electrojet, in agreement with those inferred from ground-based magnetometer data in previous studies. The day-to-day variation in the electrojet current is compared with those in the neutral wind at various altitudes, latitudes, and longitudes. It is found that the electrojet variability is dominated by the zonal wind at 100-120 km altitudes near the magnetic equator. These results suggest that the response of the zonal polarization electric field to variable zonal winds is the main source of the day-to-day variation of the equatorial electrojet during quiet periods.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d79z95wq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-08-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:55:56.113815

Metadata language

eng; USA