Identification

Title

Using artificial intelligence to improve real-time decision-making for high-impact weather

Abstract

High-impact weather events, such as severe thunderstorms, tornadoes, and hurricanes, cause significant disruptions to infrastructure, property loss, and even fatalities. High-impact events can also positively impact society, such as the impact on savings through renewable energy. Prediction of these events has improved substantially with greater observational capabilities, increased computing power, and better model physics, but there is still significant room for improvement. Artificial intelligence (AI) and data science technologies, specifically machine learning and data mining, bridge the gap between numerical model prediction and real-time guidance by improving accuracy. AI techniques also extract otherwise unavailable information from forecast models by fusing model output with observations to provide additional decision support for forecasters and users. In this work, we demonstrate that applying AI techniques along with a physical understanding of the environment can significantly improve the prediction skill for multiple types of high-impact weather. The AI approach is also a contribution to the growing field of computational sustainability. The authors specifically discuss the prediction of storm duration, severe wind, severe hail, precipitation classification, forecasting for renewable energy, and aviation turbulence. They also discuss how AI techniques can process big data, provide insights into high-impact weather phenomena, and improve our understanding of high-impact weather.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7rj4n2r

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:45:46.880983

Metadata language

eng; USA