Large model structural uncertainty in global projections of urban heat waves
Urban heat waves (UHWs) are strongly associated with socioeconomic impacts. Here, we use an urban climate emulator combined with large ensemble global climate simulations to show that, at the urban scale a large proportion of the variability results from the model structural uncertainty in projecting UHWs in the coming decades under climate change. Omission of this uncertainty would considerably underestimate the risk of UHW. Results show that, for cities in four high-stake regions - the Great Lakes of North America, Southern Europe, Central India, and North China - a virtually unlikely (0.01% probability) UHW projected by single-model ensembles is estimated by our model with probabilities of 23.73%, 4.24%, 1.56%, and 14.76% respectively in 2061-2070 under a high-emission scenario. Our findings suggest that for urban-scale extremes, policymakers and stakeholders will have to plan for larger uncertainties than what a single model predicts if decisions are informed based on urban climate simulations. Understanding the uncertainties associated with urban heat wave (UHW) projection is critical for local actions to mitigate extreme heat risks in cities. Here, the authors show that choices of model structural design contribute a large proportion of the uncertainty in projecting UHWs under climate change.
document
http://n2t.net/ark:/85065/d74m9809
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2021-12-18T00:00:00Z
Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:29:15.199460