Identification

Title

Evaluation of a convection-permitting modeling of precipitation over the Tibetan plateau and its influences on the simulation of snow-cover fraction

Abstract

Precipitation is a critical input to land surface and hydrology modeling and prediction. Dynamical downscale modeling has added value to representing precipitation, when compared with the performance of coarse-resolution reanalysis and global climate models, over the Tibetan Plateau (TP). Convection-permitting modeling (CPM) may even outperform dynamical downscale models (DDMs). In this study, 4-km CPM results were compared to 28-km DDM results for a snow season (1 October 2013-31 May 2014) over the TP. The CPM- and DDM-simulated precipitation, as well as three merged gridded precipitation datasets, were evaluated against in situ observations below 4800 m. The five precipitation datasets (CPM, DDM, CMFD, COPRPH, and TRMM) showed large differences over the TP with underestimation of TRMM and overestimation of CPM and DDM compared to observations. The most significant difference occurred in the Brahmaputra Grand Canyon. Given the substantial uncertainty in observed precipitation at high mountains, snow cover simulated by a high-resolution land data assimilation system was used to indirectly evaluate the above precipitation data using MODIS observations. Simulated snow-cover fraction was greatly underestimated using all the merged precipitation datasets. However, simulations using the DDM- and CPM-generated precipitation as input outperformed those using other gridded precipitation data, showing lower biases, higher pattern correlations, and closer probability distribution functions than runs driven by the merged precipitation. The findings of this study generally support the assumption that high-resolution CPM-produced precipitation has an added value for use in land surface and hydrology simulations in high-mountain regions without reliable in situ precipitation observations.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7j969p5

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-07-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:32:21.324988

Metadata language

eng; USA