Sensitivity of tropospheric ozone over the southeast USA to dry deposition
Dry deposition (DD) is a major loss process for tropospheric ozone and some reactive nitrogen and carbon precursors. We investigate the response of summertime ozone and its production chemistry over the Southeast United States (USA) to variability in this sink. Turning off DD of oxidized nitrogen, ozone, or all species over the United States in the Geophysical Fluid Dynamics Laboratory AM3 model increases regional mean surface ozone by 5, 18, or 25 ppb, respectively. Additional sensitivity simulations demonstrate that, assuming linearity, surface ozone has a similar sensitivity to ozone DD as to NOx emissions. Trends in ozone production efficiency derived from observed relationships between ozone and precursor oxidation products may not solely reflect precursor emission changes if ozone DD varies (e.g., with meteorology). We conclude that DD variability merits consideration when interpreting observed ozone trends. Quantifying the impact of changes in sinks versus sources will require long-term DD measurements across the region of interest.
document
http://n2t.net/ark:/85065/d7hx1gxc
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2020-04-16T00:00:00Z
Copyright 2020 American Geophysical Union.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:07:30.748683