Identification

Title

Changes in terrestrial aridity for the period 850--2080 from the Community Earth System Model

Abstract

This study examines changes in terrestrial aridity due to both natural and anthropogenic forcing for the period 850-2080 by analyzing the Community Earth System Model (CESM) Last Millennium Ensemble simulations for 850-2005 and the CESM Large Ensemble simulations for 1920-2080. We compare terrestrial aridity in the Medieval Warm Period (MWP) (950-1250) with that in the Little Ice Age (LIA) (1550–1850), present day (PD) (1950–2005) with the last millennium (LM) (850-1850), and the future (F8.5) (2050-2080) with the LM, to place anthropogenic changes in the context of changes due to natural forcings. The aridity index defined as the ratio of annual precipitation to potential evapotranspiration, averaged over land, becomes smaller (i.e., a drier terrestrial climate) by 0.34% for MWP versus LIA (MWP-LIA), 1.4% for PD versus LM (PD-LM), and 7.8% for F8.5 versus LM (F8.5-LM). The change of terrestrial-mean aridity in PD-LM and F8.5-LM due to anthropogenic forcing is thus 4 and 20 times of that from MWP-LIA due to natural forcing, respectively. It is shown that a drier climate in PD than LM is largely due to a decrease of precipitation while a drier climate in F8.5 than LM, and MWP than LIA, is mainly caused by an increase of temperature. The terrestrial-mean aridity change in PD-LM is, however, largely driven by greenhouse gas increases as in F8.5-LM. This is because anthropogenic aerosols have a small effect on terrestrial-mean aridity but at the same time they totally alter the attributions of aridity changes to meteorological variables by causing large negative anomalies in surface air temperature, available energy, and precipitation. Different from MWP-LIA and F8.5-LM, there are large spatial inhomogeneities in P/PET changes for PD-LM in both magnitudes and signs, caused by anthropogenic aerosols, greenhouse gases, and land surface changes. The changes of terrestrial-mean P and P - E (precipitation minus evaporation) for 850–2080 are also examined. The relative changes in P (P − E) are 0.4% (0.6%) for MWP-LIA, -2.6% (-3.8%) for PD-LM, and 4.7% (11.8%) for F8.5-LM. The signs of changes in P - E and P are the same.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7125v8z

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-03-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T20:50:04.942652

Metadata language

eng; USA