Identification

Title

The Central Amazon biomass sink under current and future atmospheric CO2: Predictions from big‐leaf and demographic vegetation models

Abstract

There is large uncertainty whether Amazon forests will remain a carbon sink as atmospheric CO2 increases. Hence, we simulated an old-growth tropical forest using six versions of four terrestrial models differing in scale of vegetation structure and representation of biogeochemical (BGC) cycling, all driven with CO2 forcing from the preindustrial period to 2100. The models were benchmarked against tree inventory and eddy covariance data from a Brazilian site for present-day predictions. All models predicted positive vegetation growth that outpaced mortality, leading to continual increases in present-day biomass accumulation. Notably, the two vegetation demographic models (VDMs) (ED2 and ELM-FATES) always predicted positive stem diameter growth in all size classes. The field data, however, indicated that a quarter of canopy trees didn't grow over the 15-year period, and while high interannual variation existed, biomass change was near neutral. With a doubling of CO2, three of the four models predicted an appreciable biomass sink (0.77 to 1.24 Mg ha(-1) year(-1)). ELMv1-ECA, the only model used here that includes phosphorus constraints, predicted the lowest biomass sink relative to initial biomass stocks (+21%), lower than the other BGC model, CLM5 (+48%). Models projections differed primarily through variations in nutrient constraints, then carbon allocation, initial biomass, and density-dependent mortality. The VDM's performance was similar or better than the BGC models run in carbon-only mode, suggesting that nutrient competition in VDMs will improve predictions. We demonstrate that VDMs are comparable to nondemographic (i.e., "big-leaf") models but also include finer scale demography and competition that can be evaluated against field observations.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7cz3bcd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:11:41.252258

Metadata language

eng; USA