Identification

Title

Accelerated sea ice loss from late summer cyclones in the new Arctic

Abstract

Synoptic-scale cyclones in the Arctic are an important source of short-term sea ice variability during the melt season. This study examines whether recent changes to the Arctic environment have made Arctic cyclones during the summer months more destructive to sea ice on short time scales. We compare the 1-7-day changes in sea ice area and thickness following days in each month with and without cyclones from two decades: 1991-2000 and 2009-18. Only in August do cyclones locally accelerate seasonal sea ice loss on average, and the ability of August cyclones to accelerate ice loss has become more pronounced in the recent decade. The recent increase in ice loss following August cyclones is most evident in the Amerasian Arctic (140 degrees E-120 degrees W), where reanalyses indicate that the average upper-ocean temperature has increased by 0.2 degrees-0.8 degrees C and the average ice thickness has decreased by almost 1 m between the two decades. Such changes promote cyclone-induced ocean mixing and sea ice divergence that locally increase the likelihood for rapid ice loss near cyclones. In contrast, June cyclones in both decades locally slow down seasonal sea ice loss. Moreover, the 7-day sea ice loss in June has increased from the early to the recent decade by 67% more in the absence of cyclones than in the presence of cyclones. The largest increases in June ice loss occur in the Eurasian Arctic (0 degrees-140 degrees E), where substantial reductions in average surface albedo in the recent decade have allowed more of the abundant insolation in the absence of cyclones to be absorbed at the sea surface.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7x63rtk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:40:44.951512

Metadata language

eng; USA