Identification

Title

Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S. during DC3

Abstract

One of the objectives of the Deep Convective Clouds and Chemistry (DC3) field experiment was to determine the scavenging of soluble trace gases by thunderstorms. We present an analysis of scavenging of hydrogen peroxide (H2O2) and methyl hydrogen peroxide (CH3OOH) from six DC3 cases that occurred in Oklahoma and northeast Colorado. Estimates of H2O2 scavenging efficiencies are comparable to previous studies ranging from 79 to 97% with relative uncertainties of 5-25%. CH3OOH scavenging efficiencies ranged from 12 to 84% with relative uncertainties of 18-558%. The wide range of CH3OOH scavenging efficiencies is surprising, as previous studies suggested that CH3OOH scavenging efficiencies would be <10%. Cloud chemistry model simulations of one DC3 storm produced CH3OOH scavenging efficiencies of 26–61% depending on the ice retention factor of CH3OOH during cloud drop freezing, suggesting ice physics impacts CH3OOH scavenging. The highest CH3OOH scavenging efficiencies occurred in two severe thunderstorms, but there is no obvious correlation between the CH3OOH scavenging efficiency and the storm thermodynamic environment. We found a moderate correlation between the estimated entrainment rates and CH3OOH scavenging efficiencies. Changes in gas-phase chemistry due to lightning production of nitric oxide and aqueous-phase chemistry have little effect on CH3OOH scavenging efficiencies. To determine why CH3OOH can be substantially removed from storms, future studies should examine effects of entrainment rate, retention of CH3OOH in frozen cloud particles during drop freezing, and lightning-NOx production.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7sq920r

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-04-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:01:24.331125

Metadata language

eng; USA