Identification

Title

Asymmetric Kelvin-Helmholtz instability at Jupiter's magnetopause boundary: Implications for corotation-dominated systems

Abstract

The multifluid Lyon-Fedder-Mobarry (MFLFM) global magnetosphere model is used to study the interactions between solar wind and rapidly rotating, internally driven Jupiter magnetosphere. The MFLFM model is the first global simulation of Jupiter magnetosphere that captures the Kelvin-Helmholtz instability (KHI) in the critically important subsolar region. Observations indicate that Kelvin-Helmholtz vortices are found predominantly in the dusk sector. Our simulations explain that this distribution is driven by the growth of KHI modes in the prenoon and subsolar region (e.g., >10 local time) that are advected by magnetospheric flows to the dusk sector. The period of density fluctuations at the dusk terminator flank (18 magnetic local time, MLT) is roughly 1.4 h compared with 7.2h at the dawn flank (6 MLT). Although the simulations are only performed using parameters of the Jupiter's magnetosphere, the results may also have implications for solar wind-magnetosphere interactions at other corotation-dominated systems such as Saturn. For instance, the simulated average azimuthal speed of magnetosheath flows exhibit significant dawn-dusk asymmetry, consistent with recent observations at Saturn. The results are particularly relevant for the ongoing Juno mission and the analysis of dawnside magnetopause boundary crossings for other planetary missions.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7154kpp

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-01-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:42:37.988737

Metadata language

eng; USA