Identification

Title

Midlatitude cirrus cloud radiative forcing over China

Abstract

Midlatitude cirrus cloud radiative forcing (CRF) values at the tropopause over China are estimated using a radiative transfer model initialized by Earth-orbiting Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. A derived diurnal mean CRF, solved as a function of solar zenith angle, θ, though varied over the solar day, is used to evaluate the sensitivity and influence of θ on CRF calculations. Although a total mean net (NET) CRF of 36.5 ± 48.4 W m&#8315², estimated using direct observation data, is approximately equal to the value of 36.8 ± 50.4 W m&#8315² from the diurnal mean simulations, monthly differences illustrate a seasonality function dictating the influence of θ on CRF. A significant positive NET effect exceeding similar to 80 W m&#8315² over the Qinghai-Tibet Plateau is found, which is in contrast to a NET CRF found to be closer to 20 W m&#8315² for most parts of China. This finding is attributable to a more prominent warming effect of cirrus clouds observed over higher terrain. Furthermore, a warmer and more humid thermal profile over the high terrain in summer induces decreases in longwave (LW) and NET CRF over the plateau. The seasonal spatial variability of cirrus cloud visible optical depths also contributes to the corresponding spatial variability of shortwave (SW), LW, and NET CRF solved.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7n0173n

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-10-29T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2010 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:12:38.644720

Metadata language

eng; USA