Identification

Title

Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere

Abstract

Light-absorbing carbonaceous aerosols (LACs), including black carbon and light-absorbing organic carbon (brown carbon, BrC), have an important role in the Earth system via heating the atmosphere, dimming the surface, modifying the dynamics, reducing snow/ice albedo, and exerting positive radiative forcing. The lifecycle of LACs, from emission to atmospheric evolution further to deposition, is key to their overall climate impacts and uncertainties in determining their hygroscopic and optical properties, atmospheric burden, interactions with clouds, and deposition on the snowpack. At present, direct observations constraining some key processes during the lifecycle of LACs (e.g., interactions between LACs and hydrometeors) are rather limited. Large inconsistencies between directly measured LAC properties and those used for model evaluations also exist. Modern models are starting to incorporate detailed aerosol microphysics to evaluate transformation rates of water solubility, chemical composition, optical properties, and phases of LACs, which have shown improved model performance. However, process-level understanding and modeling are still poor particularly for BrC, and yet to be sufficiently assessed due to lack of global-scale direct measurements. Appropriate treatments of size- and composition-resolved processes that influence both LAC microphysics and aerosol-cloud interactions are expected to advance the quantification of aerosol light absorption and climate impacts in the Earth system. This review summarizes recent advances and up-to-date knowledge on key processes during the lifecycle of LACs, highlighting the essential issues where measurements and modeling need improvement.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d70v8h3b

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-12-21T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:31:21.275820

Metadata language

eng; USA