Identification

Title

Initiation of an elevated mesoscale convective system with the influence of complex terrain during Meiyu season

Abstract

A mesoscale convective system (MCS) was initiated on the lee side of the Wuling Mountain in central-east China in the late afternoon (1700 LT) on June 27, 2016, and led to an early morning precipitation peak. We investigated the convective initiation (CI) mechanism of this MCS using radars and automatic weather station observations, WRF model simulation, and analysis from the radar data assimilation system Variational Doppler Radar Analysis System. It was found that the convection initiation was elevated as indicated by an elevated convergence zone and updraft located above 1,625 m from the ground. A zero convective inhibition layer was located at 850 hPa, over a stable boundary layer (BL) resulting from the daytime rainfall in the plain region, and provided a favorable condition for the elevated CI. Our study suggested that the transition of mountain-plain thermal wind near sunset was the trigger for the convective initiation. An early afternoon mountain-plain thermal circulation was disrupted when the east-facing lee side slope was in the shadow of sunshine after 4 p.m. As a result, a local-scale northwest downslope wind accelerated and led to a downstream convergence above the stable BL, where the elevated convection was initiated near 1,625 m above ground level. By combining the model simulation, the analysis from data assimilation, and the observations, this study is the first to provide a detailed analysis of CI mechanism of elevated convection in a complex topography region during the Meiyu season in China.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7959mxm

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-01-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:09:37.048102

Metadata language

eng; USA