Identification

Title

Climate responses under an extreme quiet sun scenario

Abstract

Fundamental understanding of the climate responses to solar variability is obscured by the large and complex climate variability. This long-standing issue is addressed here by examining climate responses under an extreme quiet sun (EQS) scenario, obtained by making the sun void of all magnetic fields. It is used to drive a coupled climate model with whole atmosphere and ocean components. The simulations reveal significant responses, and elucidate aspects of the responses to changes of troposphere/surface forcing and stratospheric forcing that are similar and those that are different. Planetary waves (PWs) play a key role in both regional-scale responses and the mean circulation changes. Intermediate scale stationary waves and regional climate respond to solar forcing changes in the troposphere and stratosphere in a similar way, due to similar subtropical wind changes in the upper troposphere. The patterns of these changes are similar to those found in a warming climate, but with opposite signs. Responses of the largest scale PW during northern hemisphere and southern hemisphere winters differ, leading to hemispheric differences in the interplay between dynamical and radiative processes. The analysis exposes remarkable general similarities between climate responses in EQS simulations and those under nominal solar minimum conditions, even though the latter may not always appear to be statistically significant.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7x06c0b

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-02-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2023 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:23:32.001279

Metadata language

eng; USA