Identification

Title

Sensitivity of hurricane forecasts to cumulus parameterizations in the HWRF model

Abstract

The Developmental Testbed Center used the Hurricane Weather Research and Forecasting (HWRF) system to test the sensitivity of tropical cyclone track and intensity forecasts to different convective schemes. A control configuration that employed the HWRF Simplified Arakawa Scheme (SAS) was compared with the Kain-Fritsch and Tiedtke schemes, as well as with a newer implementation of the SAS. A comprehensive test for Atlantic and Eastern North Pacific storms shows that the SAS scheme produces the best track forecasts. Even though the convective parameterization was absent in the inner 3 km nest, the intensity forecasts are sensitive to the choice of cumulus scheme on the outer grids. The impact of convective-scale heating on the environmental flow accumulates in time since the hurricane vortex is cycled in the HWRF model initialization. This study shows that, for a given forecast, the sensitivity to cumulus parameterization combines the influence of physics and initial conditions.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7dj5gnk

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-12-28T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T00:03:23.389300

Metadata language

eng; USA