Low-level Z DR signatures in supercell forward flanks: The role of size sorting and melting of hail
The low levels of supercell forward flanks commonly exhibit distinct differential reflectivity (ZDR) signatures, including the low-ZDR hail signature and the high-ZDR "arc." The ZDR arc has been previously associated with size sorting of raindrops in the presence of vertical wind shear; here this model is extended to include size sorting of hail. Idealized simulations of a supercell storm observed by the Norman, Oklahoma (KOUN), polarimetric radar on 1 June 2008 are performed using a multimoment bulk microphysics scheme, in which size sorting is allowed or disallowed for hydrometeor species. Several velocity–diameter relationships for the hail fall speed are considered, as well as fixed or variable bulk densities that span the graupel-to-hail spectrum. A T-matrix-based emulator is used to derive polarimetric fields from the hydrometeor state variables. Size sorting of hail is found to have a dominant impact on ZDR and can result in a ZDR arc from melting hail even when size sorting is disallowed in the rain field. The low-ZDR hail core only appears when size sorting is allowed for hail. The mean storm-relative wind in a deep layer is found to align closely with the gradient in mean mass diameter of both rain and hail, with a slight shift toward the storm-relative mean wind below the melting level in the case of rain. The best comparison with the observed 1 June 2008 supercell is obtained when both rain and hail are allowed to sort, and the bulk density and associated fall-speed curve for hail are predicted by the model microphysics.
document
https://n2t.org/ark:/85065/d7bp03pb
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2014-01-01T00:00:00Z
Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-12T01:13:53.142229