Mesoscale thermodynamic influences on convection initiation near a surface dryline in a convection-permitting ensemble
In this study, the authors examine initiation of severe convection along a daytime surface dryline in a 10-member ensemble of convection-permitting simulations. Results indicate that the minimum buoyancy Bmin of PBL air parcels must be small (Bmin > -0.5°C) for successful deep convection initiation (CI) to occur along the dryline. Comparing different ensemble members reveals that CAPE magnitudes (allowing for entrainment) and the width of the zone of negligible Bmin extending eastward from the dryline act together to influence CI. Since PBL updrafts that initiate along the dryline move rapidly northeast in the vertically sheared flow as they grow into the free troposphere, a wider zone of negligible Bmin helps ensure adequate time for incipient storms to mature, which, itself, is hastened by larger CAPE. Local Bmin budget calculations and trajectory analysis are used to quantify physical processes responsible for the reduction of negative buoyancy prior to CI. Here, the grid-resolved forcing and forcing from temperature and moisture tendencies in the PBL scheme (arising from surface fluxes) contribute about equally in ensemble composites. However, greater spatial variability in grid-resolved forcing focuses the location of the greatest net forcing along the dryline. The grid-resolved forcing is influenced by a thermally direct vertical circulation, where time-averaged ascent at the east edge of the dryline results in locally deeper moisture and cooler conditions near the PBL top. Horizontal temperature advection spreads the cooler air eastward above higher equivalent potential temperature air at source levels of convecting air parcels, resulting in a wider zone of negligible Bmin that facilitates sustained CI.
document
http://n2t.net/ark:/85065/d7vq33w5
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2015-09-01T00:00:00Z
Copyright 2015 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:05:09.179719