Identification

Title

Explicit prediction of continental convection in a skillful variable‐resolution global model

Abstract

We present a new global‐to‐regional model, cfvGFS, able to explicitly (without parameterization) represent convection over part of the Earth. This model couples the Geophysical Fluid Dynamics Laboratory Finite‐Volume Cubed‐Sphere Dynamical Core (FV3) to the Global Forecast System physics and initial conditions, augmented with a six‐category microphysics and a modified planetary boundary layer scheme. We examine the characteristics of cfvGFS on a 3‐km continental U. S. domain nested within a 13‐km global model. The nested cfvGFS still has good hemispheric skill comparable to or better than the operational Global Forecast System, while supercell thunderstorms, squall lines, and derechos are explicitly represented over the refined region. In particular, cfvGFS has excellent representations of fine‐scale updraft helicity fields, an important proxy for severe weather forecasting. Precipitation biases are found to be smaller than in uniform‐resolution global models and competitive with operational regional models; the 3‐km domain also improves upon the global models in 2‐m temperature and humidity skill. We discuss further development of cfvGFS and the prospects for a unified global‐to‐regional prediction system.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7kh0pxz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-05-14T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:22:53.357156

Metadata language

eng; USA