Regime of validity of soundproof atmospheric flow models
Ogura and Phillips derived the original anelastic model through systematic formal asymptotics using the flow Mach number as the expansion parameter. To arrive at a reduced model that would simultaneously represent internal gravity waves and the effects of advection on the same time scale, they had to adopt a distinguished limit requiring that the dimensionless stability of the background state be on the order of the Mach number squared. For typical flow Mach numbers of , this amounts to total variations of potential temperature across the troposphere of less than one Kelvin (i.e., to unrealistically weak stratification). Various generalizations of the original anelastic model have been proposed to remedy this issue. Later, Durran proposed the pseudoincompressible model following the same goals, but via a somewhat different route of argumentation. The present paper provides a scale analysis showing that the regime of validity of two of these extended models covers stratification strengths on the order of (hsc/θ)dθ/dz < M2/3, which corresponds to realistic variations of potential temperature θ across the pressure scale height hsc of . Specifically, it is shown that (i) for (hsc/θ)dθ/dz < Mμ with 0 < μ < 2, the atmosphere features three asymptotically distinct time scales, namely, those of advection, internal gravity waves, and sound waves; (ii) within this range of stratifications, the structures and frequencies of the linearized internal wave modes of the compressible, anelastic, and pseudoincompressible models agree up to the order of Mμ; and (iii) if μ < ⅔, the accumulated phase differences of internal waves remain asymptotically small even over the long advective time scale. The argument is completed by observing that the three models agree with respect to the advective nonlinearities and that all other nonlinear terms are of higher order in M.
document
http://n2t.net/ark:/85065/d72v2hdq
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2010-10-01T00:00:00Z
Copyright 2010 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:04:42.167175